дефекты бетонной смеси

Бетон в Москве

В настоящее время наш рабочий день закончен. Оставьте свой телефон и мы перезвоним в удобное для вас время! Ваша заявка в обработке. Наш менеджер в скором времени свяжется с Вами! Производство и доставка бетона по Москве и области.

Дефекты бетонной смеси можно ли штукатурить цементным раствором саманные стены

Дефекты бетонной смеси

Растворы, применяемые для борьбы со льдом, содержащие сульфат или нитрат аммония, быстро разрушают бетон. Отшелушивание извести над крупным заполнителем — другая форма разрушения, похожая на сколы, вызываемая теми же причинами, что и разрушение от замерзания. Недостаток воды, не обходимой для гидратации цемента, приводит к образованию слабого слоя над заполнителем. Во избежание этого:. Если есть опасность разрушения или отшелушивания бетона, рекомендуется сделать «дышащее» покрытие из силанов, силоксанов и пр.

Выбоин можно избежать:. В остальных случаях требуется ремонт на полную толщину стяжки. Липкие смеси имеют тенденцию к образованию корки при высыхании на ветру, при этом внизу смесь остается пластичной, и воздух поднимается вверх. Песок можно заменить таким же количеством самого тонкого заполнителя. Более жесткие смеси должны высвобождать воздух при вибрировании. Если на поверхности образовалась корка, требуется другая технология финишной отделки: плоское заглаживание диском во избежание дополнительного попадания воздуха в поверхность, как это происходит при затирке лопастями;.

Во избежание появления вздутия:. Трещины, образующиеся до твердения бетона, являются результатом усадки, вызванной быстрой потерей воды, пока бетон еще пластичный. Усадочные трещины могут возникнуть в местах нахождения арматуры или стыка с затвердевшим бетоном из-за недостаточной вибрации, высокого оползания, или недостаточного слоя над арматурой.

Трещины пластического сжатия относительно короткие, возникают перед последней финишной обработкой в ветреные дни, при низкой влажности и высокой температуре. Влага с поверхности испаряется быстрее, чем подтягивается снизу, заставляя бетон сверху сжиматься быстрее, чем снизу. Трещины пластического сжатия бывают от нескольких см до 3 м в длину и часто проникают на половину глубины бетона. Трещины, появляющиеся после затвердевания, это результат усадочного высыхания, термического сжатия, усадки подосновы.

Высыхая, бетон сжимается на 1,6 мм на 3 м длины. Конструкционные швы нарезаются через равные интервалы 3 м во всех направлениях на миллиметровом неармированном бетоне и через 6 м на мм стяжке. С увеличением количества воды в бетоне пропорционально увеличивается усадка. Увеличение песка и уменьшение количества заполнителя также ведут к увеличению усадки, так как возрастает количество воды, а мелкий заполнитель имеет меньшую усадочную стойкость. Использование добавок хлорида кальция также увеличивает усадку.

Меры по предотвращению растрескивания:. Волосяные трещины - сеть мелких поверхностных трещин, появляющихся вследствие небольшого поверхностного сжатия. Трещины окружают маленькие участки поверхности менее 50 мм.

Эти трещины не означают начала разрушения бетона. В начале набора прочности бетона из-за климатических условий, особенно при относительной влажности, жаре и ветре в период высыхания могут появиться волосяные трещины. Для предотвращения образования таких трещин следует защищать бетон от температурных и влажностных перепадов.

Подъем краев стяжки — происходит из-за различий во влажности и температуре между верхом и низом стяжки. Подъема можно избежать, если:. Усадку смеси можно сократить путем:. Содержание влаги в бетоне может быть стабилизировано путем:. Степень поднятия края стяжки обычно сокращается со временем. Если подъем края стяжки от влажности продолжается, одно из решений это увлажнить край, пока он не вернется в изначальный уровень, и сделать конструкционный шов в месте подъема.

Морозостойкость — способность бетона в насыщенном водой состоянии выдерживать многократное замораживание и оттаивание. Это наиболее разрушительный фактор, особенно в присутствии антиобледенителей. С вовлечением воздуха процесс разрушения уменьшается. Вода вытесняется в поры воздуха, и гидравлическое давление ослабевает.

Вода при замерзании также может вытесняться из заполнителя в цементное тесто. Однако, если тесто качественное с низким водоцементным соотношением ВЦ , оно предохраняет заполнитель от насыщения влагой. Проникающая способность в большей степени определяется проницаемостью бетона. Проницаемость — способность материала сопротивляться воздействию увлажнения, влиянию различных атмосферных факторов и агрессивных сред.

Низкая проникающая способность уменьшает проникновение в бетон жидкостей, сульфатов и хлорид-ионов. Проникающая способность также влияет на разрушение при замерзании. Проникающая способность теста особенно важна. Она связана с ВЦ и степенью гидратации цемента или продолжительностью влажного твердения. Бетон с низкой проникающей способностью требует низкого ВЦ и адекватного периода влажного твердения. Проникающая способность возрастает при высыхании. Абразивная стойкость — способность материала сопротивляться действию истирающих нагрузок.

Абразивная стойкость бетона тесно связана с прочностью на сжатие. Для получения высокой абразивной стойкости требуется низкое ВЦ и адекватное время влажного твердения. Крупный заполнитель более стоек к истиранию. Затертые «вертолетом» полы также более стойки к истиранию.

Температурные изменения размеров бетона такие же, как у стали. Усадка бетона при высыхании зависит от количества воды при замесе. Усадка также зависит от количества заполнителя, его свойств, размера и формы бетонной массы, относительной влажности и окружающей температуры, метода твердения, степени гидратации и времени. Бетон под давлением деформируется эластично. Постоянное давление вызывает деформацию, называемую ползучестью. Со временем скорость такой деформации за ед.

Влияние щелочесодержащих заполнителей - это вид разрушения бетона, вызванный реакцией между активными минералами в некоторых заполнителях и натрий или калийсодержащими щелочами в бетоне, которые обычно извлекаются из цемента. Все природные породы реагируют до некоторой степени, и обычно эта реакция приводит к прочным связям теста с заполнителем и арматурой.

В некоторых случаях, однако, эта реакция может быть разрушительна и вызывать растрескивание бетона при увлажнении. Влияние ионов хлоридов , которые соединяются с солями морской воды, или с солями, использующимися для борьбы с наледью на дорогах, и вызывают коррозию арматуры, разрушая слой оксидированного железа, что приводит к дальнейшему окислению. Соли разрушают как стальную арматуру, так и сам бетон. Разрушения, вызванные хлоридом кальция, способствуют ускорению коррозии арматуры.

Соли, вступая в реакцию с гидратом кальция, находящимся в бетоне, образуют оксидированный гидрат кальция с последующим увеличением объема. Стойкость к сульфатам. Чрезмерное количество сульфатов в почве или воде может через лет разрушить неправильно рассчитанный бетон. Сульфаты вступают в реакцию с гидроалюминатом кальция, образуя сульфоалюминат кальция эттрингит. Из-за роста кристаллов избыточное давление может вызвать растрескивание бетона. Воздействие сульфатов может также привести к разрушению железобетонных конструкций.

Сульфаты вступают в реакцию с другими химическими компонентами, образующими мел, эттрингиды и таумаситы. Образование этих продуктов внутри структуры бетона приводит к увеличению объема, что влечет за собой образование трещин в бетоне и последующего разлома конструкции. Карбонизация бетона — процесс, при котором диоксид углерода из воздуха проникает в бетон, реагирует с гидроксидом кальция, образуя карбонаты.

Наиболее распространенная причина разрушения бетона — карбонизация. Будучи пористым, бетон хорошо впитывает углекислый газ СО 2 , кислород и влагу, присутствующее в атмосфере. Способность бетона впитывать не влияет на прочность самой железобетонной структуры, но оказывает пагубное воздействие на арматуру, которая при повреждении бетона попадает в кислотную среду.

Карбонизация увеличивает растрескивание и понижает щелочность бетона. Высокая щелочность необходима для предотвращения коррозии арматуры. Карбонизация значительно увеличивается в бетоне с высоким ВЦ, низким содержанием портландцемента, коротким периодом твердения, низкой прочностью, высокой пористостью теста.

Степень карбонизации в качественном бетоне обычно не имеет большого практического значения. Коррозия арматуры вызвана, как правило, воздействием атмосферно-химических факторов, включающих в себя агрессивные компоненты атмосферы сульфаты, карбонаты, хлориды и частые циклы мороз-оттепель. Ржавчина, формирующаяся при окислении стальной арматуры, увеличивает ее объем, повышает «внутреннее» давление и приводит к разломам бетона и оголению арматуры.

В результате оголенные прутья арматуры разрушаются еще стремительнее, что приводит к быстрому изнашиванию бетона. Выравнивающую смесь изготавливают с использованием портландцемента марки М или М Небольшие отверстия на поверхности бетона, в отличие от полостей — неглубокие. К их образованию чаще всего приводят использование большого количества воды и недостаточное утрамбовывание виброинструментом.

Чтобы выровнять ямки на поверхности, необходимо тщательно пройтись по ним металлическими щетками и промыть струей воды. Для обеспечения надежного сцепления используйте бетон маркой на позицию выше, чем в ремонтируемой конструкции. Считаются самым серьезным дефектом бетона. Появляются как при несоблюдении пропорций при приготовлении бетонного раствора, так и в результате нарушений технологии заливки: например, непрохождения цемента в труднодоступные места.

Нарушают монолитность конструкции, ослабляют ее и могут привести к полному разрушению объекта, поэтому необходимо ответственно проводить мероприятия для выявления пустот и в случае обнаружение незамедлительно их устранять. Для устранения дефекта бетон скалывают до пустотного образования, затем внутрь закачивают смесь цемента с мелкозернистым щебнем.

Появляются в результате внешнего воздействия — например, применения нагрузки, значительно больше допустимой. Бетон также растрескивается, если используемая арматура подвержена воздействию коррозии, при смешивании раствора были нарушены пропорции используемых компонентов, а при заливке — нарушены технологии укладки бетона.

В зависимости от длины и ширины трещин применяют различные способы устранения этого дефекта. Одним из самых эффективных считается использование специального расширяющего состава, который подают под давлением. Помните, что при наличии любых дефектов — значительных, а тем более критических, запрещено продолжать строительство.

Не принятые своевременно меры по выявлению и устранению брака приведут к ухудшению эксплуатационных характеристик постройки и финансовым потерям. Главная Статьи Дефекты бетона и способы их устранения.

ГОСТ ЦЕМЕНТ ДЛЯ СТРОИТЕЛЬНЫХ РАСТВОРОВ ТЕХНИЧЕСКИЕ УСЛОВИЯ

СОПРОТИВЛЕНИЕ БЕТОНА Б20

Сколы появляются во время неаккуратной разопалубки. При демонтаже опалубочных конструкций следует аккуратно снимать щиты, чтобы не допустить сколов на углах бетонной конструкции. Трещины на лицевом бетоне могут появляться от высушивания бетонной конструкции во время процесса застывания. Если температура воздуха слишком высокая, влажность очень низкая, сильный ветер попадает на открытые участки застывающего раствора, то возможно появление трещин.

Чтобы этого избежать, бетон следует периодически смачивать водой. Расслоение бетонной смеси. Расслоение может возникнуть в случае, когда промежуток времени между послойной подачей раствора в опалубочную конструкцию большой. Тогда происходит схватывание прошлого слоя, а новый, более жидкий, ложится поверх предыдущего. Чтобы этого не допустить, нужно соблюдать правильную технологию укладки бетонной смеси. В этом уроке вы узнали, какие бывают дефекты бетонных конструкций, от чего они появляются, и как этого не допустить.

А теперь проверьте свои знания, пройдя небольшое задание. Дополнительные материалы. Информация для пользователей рамной опалубки Фрами от фирмы Дока Фильм: корпорация Doka. Интерактивное задание. Для закрепления полученных знаний пройдите тест.

Что следует делать, чтобы избежать появления трещин на бетоне? Узнать результат. Из-за чего в бетоне могут появиться каверны? Сколы могут быть заделаны ремонтными составами. Если их слишком много для индивидуальной обработки, можно использовать тонкий слой бетона. Разрушения от мороза и отшелушивание.

Из-за замерзания-оттаивания и разрушения поверхности в результате гидравлического давления воды в бетоне обнажается заполнитель. Растворы, применяемые для борьбы со льдом, содержащие сульфат или нитрат аммония, быстро разрушают бетон. Отшелушивание извести над крупным заполнителем — другая форма разрушения, похожая на сколы, вызываемая теми же причинами, что и разрушение от замерзания.

Недостаток воды, не обходимой для гидратации цемента, приводит к образованию слабого слоя над заполнителем. Во избежание этого:. Если есть опасность разрушения или отшелушивания бетона, рекомендуется сделать «дышащее» покрытие из силанов, силоксанов и пр. Выбоин можно избежать:. В остальных случаях требуется ремонт на полную толщину стяжки.

Липкие смеси имеют тенденцию к образованию корки при высыхании на ветру, при этом внизу смесь остается пластичной, и воздух поднимается вверх. Песок можно заменить таким же количеством самого тонкого заполнителя. Более жесткие смеси должны высвобождать воздух при вибрировании. Если на поверхности образовалась корка, требуется другая технология финишной отделки: плоское заглаживание диском во избежание дополнительного попадания воздуха в поверхность, как это происходит при затирке лопастями;.

Во избежание появления вздутия:. Трещины, образующиеся до твердения бетона, являются результатом усадки, вызванной быстрой потерей воды, пока бетон еще пластичный. Усадочные трещины могут возникнуть в местах нахождения арматуры или стыка с затвердевшим бетоном из-за недостаточной вибрации, высокого оползания, или недостаточного слоя над арматурой.

Трещины пластического сжатия относительно короткие, возникают перед последней финишной обработкой в ветреные дни, при низкой влажности и высокой температуре. Влага с поверхности испаряется быстрее, чем подтягивается снизу, заставляя бетон сверху сжиматься быстрее, чем снизу. Трещины пластического сжатия бывают от нескольких см до 3 м в длину и часто проникают на половину глубины бетона. Трещины, появляющиеся после затвердевания, это результат усадочного высыхания, термического сжатия, усадки подосновы.

Высыхая, бетон сжимается на 1,6 мм на 3 м длины. Конструкционные швы нарезаются через равные интервалы 3 м во всех направлениях на миллиметровом неармированном бетоне и через 6 м на мм стяжке. С увеличением количества воды в бетоне пропорционально увеличивается усадка.

Увеличение песка и уменьшение количества заполнителя также ведут к увеличению усадки, так как возрастает количество воды, а мелкий заполнитель имеет меньшую усадочную стойкость. Использование добавок хлорида кальция также увеличивает усадку. Меры по предотвращению растрескивания:.

Волосяные трещины - сеть мелких поверхностных трещин, появляющихся вследствие небольшого поверхностного сжатия. Трещины окружают маленькие участки поверхности менее 50 мм. Эти трещины не означают начала разрушения бетона.

В начале набора прочности бетона из-за климатических условий, особенно при относительной влажности, жаре и ветре в период высыхания могут появиться волосяные трещины. Для предотвращения образования таких трещин следует защищать бетон от температурных и влажностных перепадов. Подъем краев стяжки — происходит из-за различий во влажности и температуре между верхом и низом стяжки.

Подъема можно избежать, если:. Усадку смеси можно сократить путем:. Содержание влаги в бетоне может быть стабилизировано путем:. Степень поднятия края стяжки обычно сокращается со временем. Если подъем края стяжки от влажности продолжается, одно из решений это увлажнить край, пока он не вернется в изначальный уровень, и сделать конструкционный шов в месте подъема.

Морозостойкость — способность бетона в насыщенном водой состоянии выдерживать многократное замораживание и оттаивание. Это наиболее разрушительный фактор, особенно в присутствии антиобледенителей. С вовлечением воздуха процесс разрушения уменьшается.

Вода вытесняется в поры воздуха, и гидравлическое давление ослабевает. Вода при замерзании также может вытесняться из заполнителя в цементное тесто. Однако, если тесто качественное с низким водоцементным соотношением ВЦ , оно предохраняет заполнитель от насыщения влагой. Проникающая способность в большей степени определяется проницаемостью бетона.

Проницаемость — способность материала сопротивляться воздействию увлажнения, влиянию различных атмосферных факторов и агрессивных сред. Низкая проникающая способность уменьшает проникновение в бетон жидкостей, сульфатов и хлорид-ионов. Проникающая способность также влияет на разрушение при замерзании. Проникающая способность теста особенно важна. Она связана с ВЦ и степенью гидратации цемента или продолжительностью влажного твердения. Бетон с низкой проникающей способностью требует низкого ВЦ и адекватного периода влажного твердения.

Проникающая способность возрастает при высыхании. Абразивная стойкость — способность материала сопротивляться действию истирающих нагрузок. Абразивная стойкость бетона тесно связана с прочностью на сжатие. Для получения высокой абразивной стойкости требуется низкое ВЦ и адекватное время влажного твердения.

Крупный заполнитель более стоек к истиранию. Затертые «вертолетом» полы также более стойки к истиранию. Температурные изменения размеров бетона такие же, как у стали. Усадка бетона при высыхании зависит от количества воды при замесе. Усадка также зависит от количества заполнителя, его свойств, размера и формы бетонной массы, относительной влажности и окружающей температуры, метода твердения, степени гидратации и времени.

Бетон под давлением деформируется эластично. Постоянное давление вызывает деформацию, называемую ползучестью. Со временем скорость такой деформации за ед. Влияние щелочесодержащих заполнителей - это вид разрушения бетона, вызванный реакцией между активными минералами в некоторых заполнителях и натрий или калийсодержащими щелочами в бетоне, которые обычно извлекаются из цемента. Все природные породы реагируют до некоторой степени, и обычно эта реакция приводит к прочным связям теста с заполнителем и арматурой.

В некоторых случаях, однако, эта реакция может быть разрушительна и вызывать растрескивание бетона при увлажнении. Влияние ионов хлоридов , которые соединяются с солями морской воды, или с солями, использующимися для борьбы с наледью на дорогах, и вызывают коррозию арматуры, разрушая слой оксидированного железа, что приводит к дальнейшему окислению. Соли разрушают как стальную арматуру, так и сам бетон.

Разрушения, вызванные хлоридом кальция, способствуют ускорению коррозии арматуры. Соли, вступая в реакцию с гидратом кальция, находящимся в бетоне, образуют оксидированный гидрат кальция с последующим увеличением объема. Стойкость к сульфатам. Чрезмерное количество сульфатов в почве или воде может через лет разрушить неправильно рассчитанный бетон. Сульфаты вступают в реакцию с гидроалюминатом кальция, образуя сульфоалюминат кальция эттрингит.

Из-за роста кристаллов избыточное давление может вызвать растрескивание бетона. Воздействие сульфатов может также привести к разрушению железобетонных конструкций. Сульфаты вступают в реакцию с другими химическими компонентами, образующими мел, эттрингиды и таумаситы. Образование этих продуктов внутри структуры бетона приводит к увеличению объема, что влечет за собой образование трещин в бетоне и последующего разлома конструкции.

Карбонизация бетона — процесс, при котором диоксид углерода из воздуха проникает в бетон, реагирует с гидроксидом кальция, образуя карбонаты. Наиболее распространенная причина разрушения бетона — карбонизация. Будучи пористым, бетон хорошо впитывает углекислый газ СО 2 , кислород и влагу, присутствующее в атмосфере. Способность бетона впитывать не влияет на прочность самой железобетонной структуры, но оказывает пагубное воздействие на арматуру, которая при повреждении бетона попадает в кислотную среду.

Карбонизация увеличивает растрескивание и понижает щелочность бетона. Высокая щелочность необходима для предотвращения коррозии арматуры. Карбонизация значительно увеличивается в бетоне с высоким ВЦ, низким содержанием портландцемента, коротким периодом твердения, низкой прочностью, высокой пористостью теста.

Посетила распыляемый бетон сделано. Почти

По нашему мнению это позволяет делать более достоверные выводы о соответствии обследованных конструкций из монолитного железобетона требованиям проектной и нормативной документации. Из всего многообразия дефектов нами в фиксируются и оцениваются следующие дефекты:. При инструментальном описании дефектов нами используются приборы и оборудование отвечающие требованиям ГОСТ Правила выполнения измерений.

Элементы заводского изготовления». Для измерения ширины раскрытия трещин используется микроскоп с ценой деления 0,02мм. Для измерения глубины трещин используется прибор Пульсар 2. Для измерения размеров раковин используется линейка диаметр и штангенциркуль глубина. Для измерения размеров недоуплотненных участков, посторонних включений и оголения арматуры используется рулетка или линейка.

Для измерения глубины околов ребер используется угольник. При обнаружении трещин проводятся измерения ширины их раскрытия. При обнаружении оголённой арматуры, раковин и пустот, недоуплотненных участков и посторонних включений определяются их размеры. Для швов бетонирования фиксируется их положение относительно осей конструкции и отсутствие контакта бетонных поверхностей в шве.

В последнее время при инструментальном измерении дефектов нами дополнительно используются ультразвуковые приборы, которые позволяют получить более объективную картину. Измерение глубины трещины например позволяет отнести ее к конструкционной, влияющей на несущую способность конструкции либо к неконструкционной усадочной. Ультразвуковой метод позволяет также определять наличие или отсутствие контакта слоев бетона в рабочем шве бетонирования и границы недоуплотненных участков бетона.

Кроме того для выявления внутренних дефектов полости различного характера, неправильное расположение арматуры и прочее мы начали применять ультразвуковой томограф «МИРА». Современная технология возведения монолитных конструкций предполагает применение бетонных смесей с осадкой конуса 16—24 сантиметра. Такие смеси содержат много вовлеченного воздуха, который при контакте с опалубкой остается на ней и после затвердевания бетона и снятия опалубки оставляет на поверхности бетона раковины различного размера.

Прилипанию воздушных пузырьков очень способствует густая смазка на поверхности опалубки. Бетонные смеси с осадкой конуса 16 — 24 сантиметра весьма склонны к расслоению и водоотделению и по этой причине приводят к неравномерному распределению плотности и низкой долговечности монолитных конструкций.

Технология изготовления железобетонных изделий имеет некоторые отличия от технологии возведения конструкций. При этом к железобетонным изделиям традиционно предъявляются более высокие требования к качеству поверхности см. Существует несколько причин ухудшения качества поверхности железобетонных изделий, основными из которых можно признать неравномерное нанесение смазки на поверхность формы, недостаточно эффективное уплотнение бетонной смеси и ее неправильная рецептура. Основным отличием технологии изготовления железобетонных изделий является применение гораздо менее пластичных бетонных смесей — вместо смеси с осадкой конуса см применяется смесь с осадкой конуса 4…8 см.

Такие смеси содержат гораздо меньше вовлеченного воздуха и при горизонтальном формовании позволяют получать поверхности достаточно высокой категории, вплоть до А1. Однако при кассетном способе производства вертикальное формование при любой консистенции смазки происходит защемление воздуха на поверхности формы и неизбежное образование раковин. Кроме того, при интенсивном вибровоздействии, характерном для технологии изготовления железобетонных изделий происходит дополнительное воздухововлечение в бетонную смесь, что также приводит к образованию раковин.

Работа по выявлению дефектов в нашей организации налажена и проводится в плановом порядке. Однако по нашему мнению необходимо продолжать совершенствовать как методики, так и инструменты контроля. После анализа существующих и применяемых нами методик выявления и измерения дефектов хотелось бы предложить следующее:.

Продолжить уточнение перечня дефектов, которые подлежат выявлению при обследовании изделий и конструкций и их более детальную привязку к классификатору опасности дефектов. В частности, можно было бы ввести дополнительную градацию дефектов по признаку ремонтопригодности, а именно ввести такие категории дефектов как устранимый или неустранимый.

При инструментальном определении ширины раскрытия трещин заменить неудобный в строительных условиях микроскоп Бринелля на набор щупов игольчатого типа при обеспечении точности измерений с его помощью на уровне 0,02мм как у микроскопа. При наличии раковин оценку качества поверхности железобетонных изделий и конструкций производить только по категориям А1…А7.

Заслуживает также рассмотрения методика оценки качества поверхности, в основу которой положены показатели дифференциальной пористости средний размер пор и коэффициент вариации их размеров с ее привязкой к ГОСТ [5]. При укладке бетонных смесей в монолитные железобетонные конструкции в обязательном порядке контролировать расплыв конуса и водоотделение бетонных смесей.

Проблема повышения качества и снижения дефектности монолитных железобетонных конструкций может решаться разными способами. По мнению автора по степени доступности и стоимости эти способы можно расположить в следующем порядке:.

Во всем мире считается, что качественные бетонные смеси должны суммарно содержать … кг на кубометр мелкодисперсных компонентов в виде цемента и инертного микронаполнителя. Однако в России мелкодисперсные компоненты в бетонной смеси составляют … кг и представлены только цементом.

Это и обуславливает появление дефектов как на поверхности так и внутри монолитных железобетонных конструкций. Общепринятым решением проблемы повышения качества монолитных железобетонных конструкций считается применение самоуплотняющихся бетонных смесей. Альтернативой СУБ может служить разработанная автором двухстадийная технология приготовления бетонных смесей[6].

Первая стадия этой технологии предполагает смешивание цемента, минеральной добавки и пластификатора, вторая — смешивание комплексного вяжущего полученного на первой стадии, а также воды песка и щебня по традиционной технологии с использованием существующего оборудования БСУ. Как показала практика в бетонных смесях, приготовленных по предлагаемой технологии практически отсутствует водоотделение и расслоение хотя они при этом имеют очень пластичную консистенцию расплыв конуса более мм , а качество монолитных железобетонных конструкций получается очень высоким.

В предлагаемой технологии на первой стадии может быть использован как смеситель для изготовления сухих смесей, так и шаровая мельница. В случае использования шаровой мельницы происходит повышение марки цемента и соответственно появляется возможность сокращения его расхода. Двухстадийная технология особенно выгодна при изготовлении современных бетонных смесей, содержащих большое количество компонентов цемент, микронаполнитель, пластификатор, замедлитель или ускоритель твердения, противоморозную добавку, стабилизатор при подводном бетонировании и т.

Для монолитных конструкций при применении существующей технологии изготовления и укладки бетонных смесей возможно получение категории поверхности не выше А3. Существенное повышение качества и снижение дефектности монолитных железобетонных конструкций возможно только при обязательном добавлении в бетонные смеси микронаполнителей. Радикальное улучшение качества и снижение дефектности монолитных железобетонных конструкций может быть достигнуто при переходе на двухстадийную технологию.

При этом отдельное производство микронаполнителей и их ввод в бетонные смеси станет неактуальным. Как и многие другие материалы, используемые в строительстве, бетон подвержен возникновению дефектов в процессе эксплуатации. Причины возникновения и виды дефектов, их степень различаются, в зависимости от характера конструкций, их эксплуатации, воздействующей окружающей среды. Оценку дефектов и причин их возникновения определяют в соответствии с ГОСТ Материалы и системы для защиты и ремонта бетонных конструкций.

Смысловая нагрузка данной оценки заключается в определении состояния конструкции на предмет возможности выполнения своих несущих функций в дальнейшем, а также определении технического состояния перед работами по восстановлению, защите и ремонту дефектных областей бетона. Для всестороннего и качественного изучения дефектов и причин их возникновения необходимо проводить ряд процедур:. К дефектам арматуры следует относить ее коррозию, протекающую под воздействием карбонизации, коррозионноактивных загрязнителей, а также блуждающих электрических токов.

Возникают в результате усталости бетона, ударного воздействия, перегрузки, вибрации, взрыва. Сюда же можно отнести абразивный износ и качество армирования. Некачественным может оказаться взаимодействие элементов цемента с заполнителями в бетоне. На бетон могут воздействовать агрессивные вещества кислоты, соли , что приводит к разрушительному действию.

Проявляется в выкрашивании, расслоении бетонных поверхностей, вымывании бетона до оголения арматуры. К ним относятся усадка, эрозия и износ. К физическим факторам относят и резкие изменения климатических температурных условий: тепловое воздействие, замораживание и оттаивание. Защита и ремонт бетона осуществляются с применением химических, электрохимических или физических воздействий для достижения следующих результатов:.

Дефекты бетона отличаются друг от друга по видам и причинам возникновения. Для сохранения прочности бетонных конструкций следует осуществлять периодический надзор за поврежденными участками и последующее выполнение работ по восстановлению. Своевременно и правильно выполненные мероприятия по восстановлению бетона от разрушения устранение дефектов позволит продлить срок его жизни на много лет. Безопасность и надежность зданий и сооружений напрямую зависит от их технического состояния.

Но выполненные из бетона или железобетона конструктивные элементы строительных объектов в процессе эксплуатации подвергаются разнообразным негативным воздействиям, в результате чего образуются дефекты и повреждения железобетонных конструкций. Существует множество разных причин, по которых возникают дефекты бетонных конструкций. К наиболее распространенным относят:.

Каждый из этих факторов или даже несколько в совокупности могут спровоцировать дефекты монолитных железобетонных конструкций. Чтобы предотвратить дальнейшее разрушение объектов из железобетона следует как можно скорее устранить выявленные повреждения и таким образом избежать капитального ремонта. Качество и прочность строительных объектов определяется по итогам обследований технического состояния зданий и сооружений, проводимого в соответствии требований СНиП 2.

Выявленные в процессе обследований повреждения по степени важности и опасности разделяют на три группы:. Рассматривая все существующие характерные дефекты сооружений из железобетона, наиболее опасными и часто встречающимися считаются трещин. В зависимости от степени тяжести, причины возникновения и других факторов существует определенная классификация трещин в железобетонных конструкциях.

Дефекты железобетонных плит перекрытия или других конструктивных элементов, проявляющиеся в виде трещин, классифицируются по нескольким признакам. Кроме этого различают дефекты сборных железобетонных конструкций и целостных, а также группируют повреждения по типу элементов, в которых они возникают.

Обычно при образовании трещин в изгибаемых элементах увеличиваются углы поворота, что повышает выраженность и прогибов. Обозначение, принятое в табл. Предельно допустимые прогибы по поз. Армированные арматурой с повышенной прочностью балки соответствуют всем требованиям трещиностойкости. Если в таких конструкциях выявлены трещины, то это указывает на существенные технологические недоработки или на значительные перегрузки.

Если по направлению расположенной внутри конструкции арматуры образовались продольные трещины, то это напрямую говорит о потере устойчивости сжатой арматуры. Вследствие понижаются несущие возможности и технические характеристики, что в итоге приводит к аварийному состоянию. Дефекты могут возникать и в других конструктивных элементах. Для выявления повреждений проводится специальное обследование строительных объектов.

По результатам обследований составляется заключение с указанием вида дефектов и причины их образования. Своевременное обнаружение и устранение дефектов позволяет предотвратить развитие трещин и других повреждений и продлить срок эксплуатации сооружения без предварительного капитального ремонта.

Одним из распространенных видов выявления повреждений в железобетонных конструкциях считается неразрушающий контроль дефектов бетона. Он позволяет с точностью установить размеры и степень тяжести повреждений. Для восстановления конструкций используют разные методы устранения дефектов: инъектирование, цементирование, заделка глубоких раковин и пустот, обетонирование и торкретирование поверхности и другие.

Подробно и точно правила как проводить ремонт и устранение дефектов железобетонных конструкций ГОСТ описывает и до мельчайших подробностей регламентирует технологии проведения восстановительных и защитных работ. Бетон является наиболее востребованным конструкционным материалом. Занимая первое место по объемам производства, он используется только для нужд строительства, что объясняется высокой прочностью и низкой пластичностью, а также комплексом наиболее подходящих для этой сферы эксплуатационных характеристик.

Как и любой другой материал, бетон подвержен воздействию разрушающих факторов, что требует проведения специальных мероприятий по защите конструкций уже на этапе изготовления смеси и заливки ЖБК. При выборе марки материала, метода укладки и других особенностей технологического процесса необходимо учитывать те условия, в которых будет эксплуатироваться здание или сооружение, чтобы предотвратить его разрушение.

Для этого важно понимать причины и механизмы возможного разрушения бетона. Часть из указанных групп факторов является объективной реальностью, поэтому должна учитываться при проектировании конструкций, разработке режимов их монтажа, эксплуатации, защиты и ремонта.

Обычно мероприятия по их предотвращению, устранению и минимизации прописаны в СНиПах и другой нормативно-технической документации, например, морозостойкость бетона для изготовления ЖБИ и ЖБК изначально выбирается с учетом условий их эксплуатации. Другая часть причин имеет случайный характер, например, проявляется вследствие несоблюдения технологии производства и доставки бетона, нарушений в процессе выполнения строительных работ, просчетов при проведении изысканий.

В этом случае на первый план выходит оперативность и правильность диагностики разрушений, что позволяет вовремя выполнить ремонтные или защитные работы и продлить срок службы или повысить надежность эксплуатации конструкции. В процессе эксплуатации железобетонных конструкций в воздушной среде, на них значительное влияние оказывают все кислые газы.

Поскольку основным содержащимся в воздухе веществом этого класса является углекислота концентрация CO 2 на несколько порядков выше концентрации прочих кислых газов , то ее принято считать основным фактором воздействия. Диоксид углерода, взаимодействуя в присутствии влаги с компонентами бетона продуктами гидратации извести, в частности, Ca OH 2 , вызывает образование карбоната кальция СaCO 3 и H 2 O по следующей реакции:.

Существуют и другие механизмы взаимодействия углекислоты с разными продуктами реакции. Но, в целом, этот процесс можно охарактеризовать, как интенсивный, из-за высокой способности бетона к поглощению влаги и углекислоты из атмосферы и диффузии и капиллярного их переноса в объем материала. Следует учесть, что на первом этапе процесс карбонизации можно рассматривать, как положительный, поскольку образующийся карбонат кальция имеет меньшую растворимость, чем гидроксид кальция, что приводит к повышению прочности бетона.

Так как СaCO 3 стремится закупорить имеющиеся поры, то процесс проникновения газов вглубь конструкции замедляется. С другой стороны, глубоко проникшая карбонизация приводит к нежелательным последствиям. При определенных условиях из-за интенсивного выщелачивания развиваются процессы коррозии арматуры, увеличивается ее объем, появляются избыточные напряжения, и, как следствие, трещины и сколы бетона.

После этого процесс еще больше интенсифицируется и требует немедленных мер по ремонту конструкции. Диагностика разрушений бетона, вызванных воздействием карбонатов, осуществляется посредством цветового теста с использованием фенолфталеина. Выщелачивание бетона происходит по аналогичному механизму, но требует присутствия влаги с растворенными в ней углекислотой и другими агрессивными компонентами. В результате цементный камень разрушается, и конструкция теряет прочностные свойства.

Диагностика выщелачивания бетона производится визуальным методом, при котором контролируется разрушение цементного камня. При воздействии сульфатов происходит образование внутри структуры бетона продуктов реакции гипса, таумаситов и эттригидов , которые, увеличиваясь в объеме, вызывают возникновение напряжений и разрушение матрицы.

Диагностику таких явлений проводят в лабораторных условиях путем изучения дифрактограммы. Рисунок 2. Процесс определения карбонизации бетона. Разрушение хлоридами происходит в условиях воздействия морской воды, антиобледенителей и солей. Хлор, проникая до уровня арматуры, растворяет пассивирующую пленку оксидов железа, запуская процесс коррозии. На скорость проникновения хлоридов влияет их концентрация, влажность и проницаемость бетона.

После начала процесса коррозии, как и в предыдущих случаях, из-за появления новых путей проникновения агрессивных веществ происходит нарастающее разрушение бетона. Критическая концентрация хлоридов прямо пропорциональна показателю рН бетона, что позволяет связать механизм разрушения с воздействием карбонатов и обеспечить комплексную защиту конструкций.

Для диагностики разрушения хлоридами используются несколько методов. Путем химического анализа устанавливается их весовая концентрация в цементе. Также диагностика производится при помощи цветового теста или анализа дифрактограммы в рентгеновском спектре.

Наиболее доступным методом является цветовой тест, состоящий в обработке бетона раствором нитрата серебра и флуоресцеина и последующем контроле изменения цвета. При разрушении сульфатами бетон приобретает светло-розовую окраску, а при отсутствии этого процесса — темную. Еще одним химическим механизмом разрушения бетона является взаимодействие щелочей цемента и заполнителей.

В состав некоторых заполнителей входит реакционноспособный кремнезем, реагирующий со щелочами и солями натрия и калия с образованием геля, который в присутствии влаги или воды расширяется, разламывая окружающий бетон. В результате образуются силикаты гидратированного калия и натрия с большим объемом, что приводит к появлению трещин на поверхности бетона, подрыву его участков и вспучиванию. На скорость реакции влияет уровень влажности, а так процесс замерзания и оттаивания бетона.

Признаки реакции щелочей цемента и заполнителей бетона определяются при помощи цветового теста или визуально. В последнем случае диагностируется набухание и упорядоченное паутинообразное растрескивание. Цветовой тест проводится при помощи кобальтинитрита натрия, позволяя выявить гель по окрашиванию в желтый цвет. Из физических факторов, влияющих на прочность бетона, следует выделить усадку и негативные температурные условия. При этом на его поверхности материала образуются провалы, микротрещины или трещины; гигрометрическая — происходит в первые месяцы после схватывания бетона.

Рисунок 3. Результат воздействия пластической усадки бетона. Основным методом борьбы с пластической усадкой является укрывание свежеуложенного бетона слоем водонепроницаемой пленки, нанесение материалов, создающих защитную пленку, или орошение водой на протяжении нескольких суток.

Цикл замерзания и оттаивания — процесс проникновения воды внутрь бетона, ее последующего замерзания с увеличением объема и создание напряжений в теле конструкции. В результате высоких температур также возможно разрушение бетона. В частности, этот процесс может быть обусловлен разными коэффициентами термического расширения арматуры и бетона, разрывом заполнителя с вяжущим, быстрым остыванием материала при тушении пожара водой и другим факторами.

Истирание и ударное разрушение бетона можно предотвратить на этапе разрушения бетона путем правильного выбора состава и методов защиты. Читать еще: Применение песчано-цементных смесей в строительстве Рисунок 5.

Дефект бетонной конструкции. По степени влияния на несущую способность конструкции выделяют несколько групп повреждений и, соответственно, мероприятий по их ремонту или компенсации. Наиболее «легкими» считаются дефекты, не влияющие на прочность конструкции пустоты, поверхностные раковины, выбоины, трещины, разрушение поверхностного слоя. Они не требуют срочного ремонта, но должны быть устранены в плановые сроки для предотвращения дальнейшего развития или образования новых мелких трещин.

В этом случае обязательно необходимо обеспечить защиту конструкции от воздействия внешних разрушающих факторов. При диагностике повреждений, снижающих долговечность и надежность конструкции пустот, сколов и раковин с оголением арматуры, глубинной или поверхностной коррозии бетона , необходимо в безотлагательном порядке провести мероприятия по их устранению.

В частности, производится заделка пустот и трещин, удаление рыхлого и корродирующего слоев бетона и последующее нанесение специальных материалов. При обнаружении повреждений, снижающих несущую способность конструкции наклонных, горизонтальных трещин в объеме несущих конструкций, пустот в сжатых зонах, трещин в сопряжениях плит и др. В большинстве случаев ликвидация таких дефектов требует разработки индивидуального проекта.

Статья посвящена вопросам контроля, «лечения» и локализации дефектов бетона монолитных конструкций, даются различные рекомендации по выявлению и устранению различных видов дефектов. В статье также приводятся наиболее часто встречающиеся дефекты конструкций. К настоящему моменту монолитное домостроение занимает все большую долю в области промышленного и гражданского строительства в городах России. Данному факту способствуют такие положительные предпосылки, как скорость, инновации и уникальность проектов, а также свободный выбор конфигурации будущего здания, не зависящий от типовых элементов.

С каждым годом совершенствуется технология производства железобетонных конструкций, внедряются новые строительные материалы, разрабатываются индивидуальные проекты. Наряду с этим с каждым годом ужесточаются. Дефект, устраненный ремонтной смесью типа Mapegrout Thixotropic. Для достижения положительного результата работы на объектах необходимо осуществлять контроль за качеством процесса производства. Применение этого метода целесообразно для прогрева бетона в малоармированных конструкциях. Применение «теплого» бетона.

Суть этого метода сводится к тому, что инертные компоненты бетона прогревают до расчетной температуры в условиях завода. После твердения и достижения необходимой прочности бетонную смесь перевозят в миксерах автобетоновозов. Чтобы избежать загустения, в бетонную смесь вводятся пластифицирующие добавки, а также добавки, регулирующие сроки схватывания. Греющие опалубки. Для прогрева бетона возможно применение современных опалубочных систем, оснащенных нагревателями в виде греющего провода, сеток, лент, и др.

Процессы технологического обеспечения обогрева и выдерживания бетона относятся к основной группе работ по изготовлению монолитных железобетонных конструкций в построечных условиях и во многом определяют их конечные свойства и общее качество возводимого здания по критериям долговечности и надежности. Первым этапом их информационной подготовки для любого объекта является проработка специальных технологических регламентов на обогрев и выдерживание бетона на стадии разработки ППР.

Здесь определяются способы обогрева и выдерживания монолитных конструкций, конкретные режимы, обеспечивающие достижение необходимой прочности бетона к моменту их распалубливания или загружения, конкретизируются правила выполнения работ при тепловой обработке бетона на объекте. Таким образом, для возведения монолитных конструктивных элементов требуется высококвалифицированный персонал, а также необходим жесткий контроль за соблюдением всех технологических режимов.

При этом необходимо понимать, что выполнение контроля на стройплощадке гораздо сложнее, чем в заводских условиях при производстве элементов полносборного домостроения. Как показывает практика последних лет, информационное совершенствование существующих систем обеспечения качества обогрева и выдерживания монолитных конструкций оказывает существенное влияние на повышение общей надежности возведения монолитных зданий и способствует развитию технических и методических составляющих производственных систем контроля монолитного домостроения.

Принимая участие в работе над возведением монолитных зданий, проектировщики, строители и ученые сталкиваются с рядом особенностей, не характерных для строительства кирпичных и панельных домов. Основные проблемы, вызывающие дефекты при монолитном домостроении, заключаются в острой нехватке узкопрофильных специалистов необходимой квалификации в штате строительных организаций на любом уровне и любой стадии подготовки и реализации проекта. Во-первых, важнейшим направлением обеспечения качества монолитного домостроения является обучение инженерно-технического персонала строительных организаций.

Большинство выявленных дефектов в области монолитного домостроения является следствием незнания руководителями и непосредственными исполнителями работ элементарных правил укладки бетонной смеси, несоблюдения условий непрерывности укладки и возобновления бетонирования, правил тепловой обработки бетона, неумения выполнять обязательные контролирующие мероприятия по ходу выдерживания ответственных несущих конструкций.

Из-за высокой стоимости опалубки с целью увеличения количества циклов ее оборачиваемости, строители зачастую не соблюдают режимы выдерживания бетона в опалубке и производят распалубку конструкций на более ранней стадии, чем это предусматривается технологическими картами и СНиП [8, с. Так, например, при демонтаже опалубки важное значение имеет величина сцепления бетона с опалубкой: большое сцепление затрудняет работы по распалубке, ухудшает качество бетонных поверхностей, приводит к возникновению дефектов, а также преждевременному износу опалубочных щитов.

Для обеспечения хорошего качества поверхности бетона, простого демонтажа опалубки и чистоты ее поверхности формующие поверхности опалубки выполняют из гладких, плохо смачиваемых материалов, или применяют высококачественные смазки. Все виды контроля качества ведения бетонных работ переносятся на строительную площадку. Отсюда вытекают возрастающие требования к уровню инженерной подготовки линейных ИТР подрядных организаций, инженеров по контролю качества технадзору заказчика.

Они дают обязательства о неукоснительном соблюдении технологических процессов, СНиП и ГОСТ, и на них ложится вся ответственность за качество возводимых сооружений. Кроме того, склонность монолитного бетона к образованию дефектов связана с самой природой этого материала [7, с. Во-вторых, по технологии изготовления бетонная смесь содержит существенно больше воды, чем требуется для гидратации затворения цемента, что ведет к образованию направленной пористости бетона из-за выхода несвязанной воды.

Следовательно, увеличение количества воды больше требуемого ведет к ухудшению структуры материала. В результате проявляются типичные дефекты бетона - это поры и каверны из-за выхода воды и трещины при усадке. При правильно подобранной рецептуре смеси и соблюдении технологии ее укладки микротрещины и поры не представляют опасности и не приводят к заметному ухудшению эксплуатационных свойств конструкции.

Факты эти известны подавляющему большинству строителей, но порой их не учитывают на практике, и большинство проблем строители создают себе сами, когда не соблюдают технологические требования. При бетонировании конструкций значительной толщины особенно это касается стен , образуются характерные дефекты обусловленные тем, что отдельные участки оказываются неуплотненными.

Особенно часто трещины проходят по линиям сопряжения различных участков бетонирования - как в вертикальном, так и в горизонтальном направлении. Это происходит от того, что в процессе укладки смеси не обеспечивается надежная адгезия с раннее уложенным и затвердевшим бетоном. Довольно часто упускают из виду и процессы подготовки поверхности - очистку, обеспыливание, хорошее смачивание, очистку от цементного молока и прочие обязательные технологические этапы.

При бетонировании в грунте, попадание грунта в раствор или намывание грунта между слоями бетона при перерывах в работах по бетонированию часто приводит к аналогичным проблемам. Особенно часто появляются дефекты из-за нарушения рецептуры бетонной смеси при подаче ее бетононасосами. Здесь имеет место сильно завышенное содержание воды, а контроль за подвижностью бетонной смеси не обеспечен. Одним из самых проблемных вопросов в последнее время на стройплощадках является качество бетонной стяжки пола.

Практически каждый ремонт в только отстроенной квартире начинается с демонтажа существующей стяжки из-за ее откровенно низкого качества. Причин здесь много. Самое простое и частое нарушение - основание плиты для укладки стяжки не очищают от грязи и пыли. Кроме этого самый верхний слой имеет наименьшую плотность и повышенную подвижность при пониженной прочности. Как следствие при усадке стяжки происходит отрыв верхнего слоя от основного массива.

То есть надо предусмотреть либо зачистку поверхности основания, либо обеспечить её грунтовку, что решит сразу две задачи - обеспечит надежную адгезию стяжки к основанию пола и укрепит поверхностный слой. Нельзя забывать, что к бетону стяжки предъявляются особые требования. Главное из них - предельно низкое содержание воды для того, чтобы избежать неоднородностей состава по толщине.

Когда нижние слои более плотные за счет пониженного содержания воды и повышенного содержания заполнителей происходит эффект возникновения вертикальных и горизонтальных трещин с отслоением от более плотных нижних слоев. Трещины в этом случае всегда приподняты относительно уровня пола. При ремонте в этом случае приходится решать сразу две задачи - заделка трещин и выравнивание пола.

Можно с сожалением констатировать, что все эти упущения в технологии встречаются повсеместно. Последствия проявляются в сквозных трещинах в стенах и потолках, в отслоении стяжки, в повышенной ее пористости. Иногда трещины представляют собой опасность для несущих конструкций даже внутри помещений - в случаях, когда наблюдается пониженная прочность бетона и имеется возможность коррозии арматуры.

При отслоении бетонной стяжки от основания последствием является ее разрушение, а иногда при раскрытии трещин и повреждение лицевого слоя пола. Специалисты ремонтных организаций, сталкиваясь с последствиями такого «строительства», вынуждены применять разнообразные способы ремонта.

Стяжку, как правило, приходится демонтировать и переделывать заново. В стенах и потолках - применять расшивку трещин и штукатурку, а случае когда ширины раскрытия трещин недостаточно или имеет место фильтрующая трещина - применяется либо сплошная штукатурка специальными составами, либо так называемое инъецирование. Причем из методов ремонта следует сразу исключить поверхностную замазку. Это обусловлено недостаточной глубиной заделки, а для фильтрующей трещины такая заделка недопустима - если во время заделки трещина не насыщена влагой.

Со временем подступающая извне вода либо выдавит заделку, либо просочится рядом из-за малой толщины этой заделки. В особо сложных случаях применяется инъецирование полимерными составами. Технология ремонта этим способом такова: В бетоне сверлятся отверстия, вставляются инъекционные трубки и через них подают полимерный состав.

Необходимо следить, чтобы заполнение трещин было как можно более полным. Со временем состав полимеризуется, образует водонепроницаемую пробку и прочно склеивает слои бетона. Для фильтрующих трещин следует обратить внимание, чтобы наполнение трещины полимерным составом происходило в полном объеме трещины. На практике отверстия сверлят под углом к плоскости бетона, чтобы трещина пересекалась с этими отверстиями в толще бетона на достаточно большом расстоянии от поверхности.

Следует следить, чтобы трещина закрылась по всей длине. Для этого, возможно, придется просверлить несколько отверстий. На поверхности, на время инъецирования трещина замазывается цементным раствором, играющим функцию барьера, чтобы полимерный состав не вытекал, так как закачивается он в трещины под давлением несколько десятков атмосфер.

При насыщенности трещины водой применяются составы, твердеющие в воде. Кроме того, ошибки и брак при монолитном домостроении допускаются не только фирмами, непосредственно производящими работы, но, что гораздо хуже, итоговый брак закладывается на самой ранней стадии строительства - в проектных решениях; на стадии комплектации объектов строительства - в виде поставки некачественных, несертифицированных материалов, необоснованной замены этих материалов; на стадии реализации проекта - в виде крайне легкомысленного отношения генподрядчика и представителя надзорных органов к точному соблюдению технологии Подрядчиком [5, с.

Данилова, О. Юнусов Н. Проектирование производства бетонных работ в зимнее время: Учебное пособие. Изучение процесса бетонирования монолитного перекрытия в 10 этажном монолитном жилом доме. Устройство монолитного железобетонного перекрытия краном-бадьей и автобетононасосом. Расчет затрат труда, машин и механизмов на производство строительных работ. Дефекты строительных конструкций и их последствия. Требования к технологиям монолитного железобетона. Дефекты возведения фундаментов, приводящие к снижению прочности тела фундаментов мелкого заложения и ухудшению условия их работы.

Занижение марки камня. Достоинства и недостатки монолитного домостроения. Проектирование состава бетона. Технология возведения монолитных конструкций опалубочные и арматурные работы, бетонирование. Интенсификация работ при отрицательной температуре. Оценка прочности изделий. Обзор литературы по технологии монолитного строительства. Расчет экономических и экологических показателей от внедрения технологии монолитного возведения жилья.

Оценка конкурентоспособности рассматриваемой технологии на рынке жилья на современном этапе. Проблемы проектирования монолитного здания. Расчет параметров выдерживания бетона в стенах, выбор и конструирование опалубки. Выбор способа укладки бетонной смеси. Контроль качества бетона. Строительный генеральный план. Экономическое обоснование проекта. Объемные блоки как крупные конструктивные элементы, применяемые в объемном домостроении.

Основные требования, предъявляемые к объемным блокам. Маркетинг закупочной деятельности домостроительного предприятия, учет закупок в строительной компании. Проектирование монолитного коммуникационного тоннеля для стоков. Расчёт объёмов работ: установка арматуры, устройство опалубки, бетонирование, укрытие неопалубленных поверхностей конструкций, выдерживание бетона, снятие утеплителя, контроль температуры. Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.

Рекомендуем скачать работу. Главная База знаний "Allbest" Строительство и архитектура Дефекты при монолитном домостроении. Мировой опыт строительства сооружений из монолитного железобетона. Сущность и технология монолитного домостроения. Основные проблемы, вызывающие дефекты при монолитном домостроении.

Бетонирование вертикальных конструкций в пределах одной захватки. Сущность и технология монолитного домостроения 2. Успеху этой технологии способствует целый ряд важных факторов, обеспечивающих её преимущество перед другими методами возведения строительных конструкций.

Скандал! бетон самоуплотняющийся гей. Тсc…

Последние можно обнаружить на поверхности пола самостоятельно, а для нахождения внутренних понадобится специальный прибор — дефектоскоп по бетону. Как видим, появления некоторых дефектов можно было бы и избежать. Но сколы, выбоины и трещины образуются в ходе эксплуатации бетонного пола, поэтому их необходимо периодически ремонтировать.

Чтобы минимизировать возможность появления механических повреждений, необходимо, прежде всего, соблюдать технологию обустройства бетонного пола. Чтобы минимизировать риск возникновения дефектов во время эксплуатации бетонного пола, необходимо учесть следующие рекомендации:.

Отдельную группу составляют дефекты, возникшие в результате реакции на какое-либо химическое вещество или климатическое воздействие. Все дефекты, описанные выше, могут проявляться в самой разной форме. Первые признаки многих из них могут выглядеть вполне безобидно, но все же при их обнаружении следует принимать соответствующие меры. В противном случае ситуация со временем может резко ухудшиться. Перед приемом бетонной смеси инженер по бетонным работам должен проверить на строительной площадке температуру поставляемой бетонной смеси и ее подвижность удобоукладываемость с помощью стандартного конуса.

Оптимальный состав бригады бетонщиков - шесть-восемь человек, из которых один принимает бетонную смесь из автобетоновоза в бадью, три-четыре человека принимают бетонную смесь на перекрытия, а два-три человека принимают бетонную смесь в вертикальные конструкции. Так как прием бетонной смеси в вертикальные конструкции требует больше времени, чем при бетонировании перекрытий, рекомендуется сначала бетонировать перекрытия, а последнюю бадью с каждого автобетоносмесителя использовать для бетонирования вертикальных конструкций.

Это позволяет уменьшить время разгрузки бетонной смеси с одного автобетоносмесителя и при этом увеличить количество рейсов. При бетонировании вертикальных конструкций в пределах одной захватки одновременно бетонируются две-три вертикальные конструкции послойно по Бетонная смесь должна укладываться в бетонируемые конструкции слоями одинаковой толщины без разрывов, с последовательным направлением укладки в одну сторону во всех слоях.

При уплотнении бетонной смеси не допускается опирание вибраторов на арматуру, закладные детали и элементы крепления опалубки. Глубина погружения вибратора глубинного в бетонную смесь предыдущего слоя составляет не менее Верхний уровень бетона вертикальных конструкций должен быть ниже верха щитов опалубки не менее чем на мм. В начальный период твердения бетона, бетонируемые конструкции должны защищаться от попадания атмосферных осадков или потерь влаги, а в последующем поддерживается температурно-влажностный режим с созданием условий, обеспечивающих нормальное нарастание прочности.

Непрерывное бетонирование обеспечивает наилучшее качество монолитных железобетонных конструкций, однако по технологическим и организационным причинам оно не всегда возможно, поэтому, как правило, проектом предусматриваются в плитах рабочие швы [5, с. Рабочий шов бетона образуется, когда последующий слой бетонной смеси укладывают при полностью затвердевшем предыдущем слое. Рабочий шов бетона отличается тем, что величина сцепления нового бетона со старым значительно ниже, чем в бетоне без шва, и вследствие этого уменьшается морозостойкость, водонепроницаемость, а также ухудшается внешний вид конструкции.

Для уменьшения влияния отрицательных качеств рабочих швов на эксплуатационные свойства железобетонных конструкций тщательно обрабатывается поверхность шва перед укладкой свежей бетонной смеси. Для этого с поверхности шва удаляют рыхлые слои бетона и цементной пленки, по всей длине рабочего шва выполняют насечку, очищают от грязи, промывают и продувают сжатым воздухом.

Поверхность рабочего шва увлажняют, при необходимости шов обрабатывают цементным раствором, что обеспечивает требуемую прочность и улучшает эксплуатационные качества монолитных железобетонных конструкций.

В настоящее время при отсутствии надежных и недорогих химических добавок - ускорителей твердения бетона технология зимнего бетонирования в основном базируется на применении методов прогрева бетона с его последующим выдерживанием до достижения нормативных критической и распалубочной прочности. Такая технология является, в сущности, ресурсосберегающей, так как ценой дополнительных энергозатрат достигается возможность [3, с.

Существуют различные методы прогрева бетона монолитных конструкций, выбор которых должен быть экономически обоснован с учетом типа конструкций, масштаба строительного объекта, энергоемкости метода, его надежности и трудозатрат. Проведение строительных работ при отрицательных температурах требует применения одного из методов зимнего бетонирования [11, с. Применение специальных вяжущих и противоморозных добавок.

Это наиболее простой, эффективный и чаще всего применяемый метод твердения бетона при отрицательных температурах. Выбор модификатора противоморозного действия зависит от типа и условий эксплуатации объекта строительства. Предварительный разогрев бетонной смеси перед укладкой в опалубку. Бетонная смесь разогревается, укладывается в опалубку, уплотняется, укрывается теплоизоляцией и выдерживается до достижения бетоном требуемой прочности.

Обогрев нагревательными проводами метод электропрогрева. Обогрев бетона монолитных конструкций осуществляется посредством нагревательных проводов, закладываемых в бетон. В процессе электропрогрева происходит усушка влаги, что негативно влияет на качество бетона. Применение этого метода целесообразно для прогрева бетона в малоармированных конструкциях. Применение «теплого» бетона. Суть этого метода сводится к тому, что инертные компоненты бетона прогревают до расчетной температуры в условиях завода.

После твердения и достижения необходимой прочности бетонную смесь перевозят в миксерах автобетоновозов. Чтобы избежать загустения, в бетонную смесь вводятся пластифицирующие добавки, а также добавки, регулирующие сроки схватывания. Греющие опалубки. Для прогрева бетона возможно применение современных опалубочных систем, оснащенных нагревателями в виде греющего провода, сеток, лент, и др.

Процессы технологического обеспечения обогрева и выдерживания бетона относятся к основной группе работ по изготовлению монолитных железобетонных конструкций в построечных условиях и во многом определяют их конечные свойства и общее качество возводимого здания по критериям долговечности и надежности. Первым этапом их информационной подготовки для любого объекта является проработка специальных технологических регламентов на обогрев и выдерживание бетона на стадии разработки ППР.

Здесь определяются способы обогрева и выдерживания монолитных конструкций, конкретные режимы, обеспечивающие достижение необходимой прочности бетона к моменту их распалубливания или загружения, конкретизируются правила выполнения работ при тепловой обработке бетона на объекте. Таким образом, для возведения монолитных конструктивных элементов требуется высококвалифицированный персонал, а также необходим жесткий контроль за соблюдением всех технологических режимов.

При этом необходимо понимать, что выполнение контроля на стройплощадке гораздо сложнее, чем в заводских условиях при производстве элементов полносборного домостроения. Как показывает практика последних лет, информационное совершенствование существующих систем обеспечения качества обогрева и выдерживания монолитных конструкций оказывает существенное влияние на повышение общей надежности возведения монолитных зданий и способствует развитию технических и методических составляющих производственных систем контроля монолитного домостроения.

Принимая участие в работе над возведением монолитных зданий, проектировщики, строители и ученые сталкиваются с рядом особенностей, не характерных для строительства кирпичных и панельных домов. Основные проблемы, вызывающие дефекты при монолитном домостроении, заключаются в острой нехватке узкопрофильных специалистов необходимой квалификации в штате строительных организаций на любом уровне и любой стадии подготовки и реализации проекта. Во-первых, важнейшим направлением обеспечения качества монолитного домостроения является обучение инженерно-технического персонала строительных организаций.

Большинство выявленных дефектов в области монолитного домостроения является следствием незнания руководителями и непосредственными исполнителями работ элементарных правил укладки бетонной смеси, несоблюдения условий непрерывности укладки и возобновления бетонирования, правил тепловой обработки бетона, неумения выполнять обязательные контролирующие мероприятия по ходу выдерживания ответственных несущих конструкций.

Из-за высокой стоимости опалубки с целью увеличения количества циклов ее оборачиваемости, строители зачастую не соблюдают режимы выдерживания бетона в опалубке и производят распалубку конструкций на более ранней стадии, чем это предусматривается технологическими картами и СНиП [8, с. Так, например, при демонтаже опалубки важное значение имеет величина сцепления бетона с опалубкой: большое сцепление затрудняет работы по распалубке, ухудшает качество бетонных поверхностей, приводит к возникновению дефектов, а также преждевременному износу опалубочных щитов.

Для обеспечения хорошего качества поверхности бетона, простого демонтажа опалубки и чистоты ее поверхности формующие поверхности опалубки выполняют из гладких, плохо смачиваемых материалов, или применяют высококачественные смазки. Все виды контроля качества ведения бетонных работ переносятся на строительную площадку. Отсюда вытекают возрастающие требования к уровню инженерной подготовки линейных ИТР подрядных организаций, инженеров по контролю качества технадзору заказчика.

Они дают обязательства о неукоснительном соблюдении технологических процессов, СНиП и ГОСТ, и на них ложится вся ответственность за качество возводимых сооружений. Кроме того, склонность монолитного бетона к образованию дефектов связана с самой природой этого материала [7, с. Во-вторых, по технологии изготовления бетонная смесь содержит существенно больше воды, чем требуется для гидратации затворения цемента, что ведет к образованию направленной пористости бетона из-за выхода несвязанной воды.

Следовательно, увеличение количества воды больше требуемого ведет к ухудшению структуры материала. В результате проявляются типичные дефекты бетона - это поры и каверны из-за выхода воды и трещины при усадке. При правильно подобранной рецептуре смеси и соблюдении технологии ее укладки микротрещины и поры не представляют опасности и не приводят к заметному ухудшению эксплуатационных свойств конструкции. Факты эти известны подавляющему большинству строителей, но порой их не учитывают на практике, и большинство проблем строители создают себе сами, когда не соблюдают технологические требования.

При бетонировании конструкций значительной толщины особенно это касается стен , образуются характерные дефекты обусловленные тем, что отдельные участки оказываются неуплотненными. Особенно часто трещины проходят по линиям сопряжения различных участков бетонирования - как в вертикальном, так и в горизонтальном направлении. Это происходит от того, что в процессе укладки смеси не обеспечивается надежная адгезия с раннее уложенным и затвердевшим бетоном.

Довольно часто упускают из виду и процессы подготовки поверхности - очистку, обеспыливание, хорошее смачивание, очистку от цементного молока и прочие обязательные технологические этапы. При бетонировании в грунте, попадание грунта в раствор или намывание грунта между слоями бетона при перерывах в работах по бетонированию часто приводит к аналогичным проблемам.

Особенно часто появляются дефекты из-за нарушения рецептуры бетонной смеси при подаче ее бетононасосами. Здесь имеет место сильно завышенное содержание воды, а контроль за подвижностью бетонной смеси не обеспечен. Одним из самых проблемных вопросов в последнее время на стройплощадках является качество бетонной стяжки пола.

Практически каждый ремонт в только отстроенной квартире начинается с демонтажа существующей стяжки из-за ее откровенно низкого качества. Причин здесь много. Самое простое и частое нарушение - основание плиты для укладки стяжки не очищают от грязи и пыли. Кроме этого самый верхний слой имеет наименьшую плотность и повышенную подвижность при пониженной прочности. Как следствие при усадке стяжки происходит отрыв верхнего слоя от основного массива.

То есть надо предусмотреть либо зачистку поверхности основания, либо обеспечить её грунтовку, что решит сразу две задачи - обеспечит надежную адгезию стяжки к основанию пола и укрепит поверхностный слой. Нельзя забывать, что к бетону стяжки предъявляются особые требования. Главное из них - предельно низкое содержание воды для того, чтобы избежать неоднородностей состава по толщине. Когда нижние слои более плотные за счет пониженного содержания воды и повышенного содержания заполнителей происходит эффект возникновения вертикальных и горизонтальных трещин с отслоением от более плотных нижних слоев.

Трещины в этом случае всегда приподняты относительно уровня пола. При ремонте в этом случае приходится решать сразу две задачи - заделка трещин и выравнивание пола. Можно с сожалением констатировать, что все эти упущения в технологии встречаются повсеместно. Последствия проявляются в сквозных трещинах в стенах и потолках, в отслоении стяжки, в повышенной ее пористости. Иногда трещины представляют собой опасность для несущих конструкций даже внутри помещений - в случаях, когда наблюдается пониженная прочность бетона и имеется возможность коррозии арматуры.

При отслоении бетонной стяжки от основания последствием является ее разрушение, а иногда при раскрытии трещин и повреждение лицевого слоя пола. Специалисты ремонтных организаций, сталкиваясь с последствиями такого «строительства», вынуждены применять разнообразные способы ремонта. Стяжку, как правило, приходится демонтировать и переделывать заново. В стенах и потолках - применять расшивку трещин и штукатурку, а случае когда ширины раскрытия трещин недостаточно или имеет место фильтрующая трещина - применяется либо сплошная штукатурка специальными составами, либо так называемое инъецирование.

Причем из методов ремонта следует сразу исключить поверхностную замазку. Это обусловлено недостаточной глубиной заделки, а для фильтрующей трещины такая заделка недопустима - если во время заделки трещина не насыщена влагой. Со временем подступающая извне вода либо выдавит заделку, либо просочится рядом из-за малой толщины этой заделки.

В особо сложных случаях применяется инъецирование полимерными составами. Технология ремонта этим способом такова: В бетоне сверлятся отверстия, вставляются инъекционные трубки и через них подают полимерный состав. Необходимо следить, чтобы заполнение трещин было как можно более полным.

Со временем состав полимеризуется, образует водонепроницаемую пробку и прочно склеивает слои бетона. Для фильтрующих трещин следует обратить внимание, чтобы наполнение трещины полимерным составом происходило в полном объеме трещины. На практике отверстия сверлят под углом к плоскости бетона, чтобы трещина пересекалась с этими отверстиями в толще бетона на достаточно большом расстоянии от поверхности.

Следует следить, чтобы трещина закрылась по всей длине. Для этого, возможно, придется просверлить несколько отверстий. На поверхности, на время инъецирования трещина замазывается цементным раствором, играющим функцию барьера, чтобы полимерный состав не вытекал, так как закачивается он в трещины под давлением несколько десятков атмосфер.

При насыщенности трещины водой применяются составы, твердеющие в воде. Кроме того, ошибки и брак при монолитном домостроении допускаются не только фирмами, непосредственно производящими работы, но, что гораздо хуже, итоговый брак закладывается на самой ранней стадии строительства - в проектных решениях; на стадии комплектации объектов строительства - в виде поставки некачественных, несертифицированных материалов, необоснованной замены этих материалов; на стадии реализации проекта - в виде крайне легкомысленного отношения генподрядчика и представителя надзорных органов к точному соблюдению технологии Подрядчиком [5, с.

Данилова, О. Юнусов Н. Проектирование производства бетонных работ в зимнее время: Учебное пособие. Изучение процесса бетонирования монолитного перекрытия в 10 этажном монолитном жилом доме. Устройство монолитного железобетонного перекрытия краном-бадьей и автобетононасосом.

Расчет затрат труда, машин и механизмов на производство строительных работ. Дефекты строительных конструкций и их последствия. Требования к технологиям монолитного железобетона. Дефекты возведения фундаментов, приводящие к снижению прочности тела фундаментов мелкого заложения и ухудшению условия их работы. Занижение марки камня.